Saturday, 11 February 2017

Demand Prognose Einfach Gleitenden Durchschnitt

OR-Notes sind eine Reihe von einleitenden Bemerkungen zu Themen, die unter die breite Überschrift des Bereichs Operations Research (OR) fallen. Sie wurden ursprünglich von mir in einer einleitenden ODER-Kurs Ich gebe am Imperial College verwendet. Sie stehen nun für alle Studenten und Lehrer zur Verfügung, die an den folgenden Bedingungen interessiert sind. Eine vollständige Liste der Themen in OR-Notes finden Sie hier. Prognosebeispiel Prognosebeispiel 1996 UG-Prüfung Die Nachfrage nach einem Produkt in den letzten fünf Monaten ist nachfolgend dargestellt. Verwenden Sie einen zweimonatigen gleitenden Durchschnitt, um eine Prognose für die Nachfrage in Monat 6 zu generieren. Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,9 an, um eine Prognose für die Nachfrage nach Nachfrage im Monat 6 zu generieren. Welche dieser beiden Prognosen bevorzugen Sie und warumDie zwei Monate in Bewegung Durchschnitt für die Monate zwei bis fünf ist gegeben durch: Die Prognose für den sechsten Monat ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für den Monat 5 m 5 2350. Beim Anwenden einer exponentiellen Glättung mit einer Glättungskonstante von 0,9 erhalten wir: Wie zuvor Die Prognose für Monat sechs ist nur der Durchschnitt für Monat 5 M 5 2386 Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir für den gleitenden Durchschnitt MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16,67 und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Insgesamt sehen wir, dass die exponentielle Glättung die besten Prognosen für einen Monat liefert, da sie eine niedrigere MSD aufweist. Daher bevorzugen wir die Prognose von 2386, die durch exponentielle Glättung erzeugt wurde. Prognosebeispiel 1994 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einem neuen Aftershave in einem Geschäft für die letzten 7 Monate. Berechnen Sie einen zweimonatigen gleitenden Durchschnitt für die Monate zwei bis sieben. Was würden Sie Ihre Prognose für die Nachfrage in Monat acht Bewerben exponentielle Glättung mit einer Glättungskonstante von 0,1, um eine Prognose für die Nachfrage in Monat acht abzuleiten. Welche der beiden Prognosen für den Monat acht bevorzugen Sie und warum Der Ladenbesitzer glaubt, dass Kunden auf diese neue Aftershave von anderen Marken umschalten. Erläutern Sie, wie Sie dieses Schaltverhalten modellieren und die Daten anzeigen können, die Sie benötigen, um zu bestätigen, ob diese Umschaltung stattfindet oder nicht. Der zweimonatige Gleitender Durchschnitt für die Monate zwei bis sieben ist gegeben durch: Die Prognose für Monat acht ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für Monat 7 m 7 46. Anwendung exponentieller Glättung mit einer Glättungskonstante von 0,1 wir Erhalten: Wie vorher ist die Prognose für Monat acht gerade der Durchschnitt für Monat 7 M 7 31.11 31 (da wir nicht fraktionierte Nachfrage haben können). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,1 Insgesamt sehen wir, dass die zwei Monate gleitenden Durchschnitt scheinen die besten einen Monat prognostiziert, da es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die zwei Monate gleitenden Durchschnitt produziert wurde. Um das Switching zu untersuchen, müssten wir ein Markov-Prozeßmodell verwenden, bei dem die Zustandsmarken verwendet werden, und wir müssten anfängliche Zustandsinformationen und Kundenvermittlungswahrscheinlichkeiten (von Umfragen) benötigen. Wir müssten das Modell auf historischen Daten laufen lassen, um zu sehen, ob wir zwischen dem Modell und dem historischen Verhalten passen. Prognosebeispiel 1992 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Rasierklinge in einem Geschäft für die letzten neun Monate. Berechnen Sie einen dreimonatigen gleitenden Durchschnitt für die Monate drei bis neun. Was wäre Ihre Prognose für die Nachfrage in Monat 10 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,3, um eine Prognose für die Nachfrage in Monat zehn ableiten. Welche der beiden Prognosen für Monat zehn bevorzugen Sie und warum Der dreimonatige gleitende Durchschnitt für die Monate 3 bis 9 ist gegeben durch: Die Prognose für Monat 10 ist nur der gleitende Durchschnitt für den Monat vorher, dass heißt der gleitende Durchschnitt für Monat 9 m 9 20.33. Die Prognose für den Monat 10 ist daher 20. Die Anwendung der exponentiellen Glättung mit einer Glättungskonstante von 0,3 ergibt sich wie folgt: Nach wie vor ist die Prognose für Monat 10 nur der Durchschnitt für Monat 9 M 9 18,57 19 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,3 Insgesamt sehen wir, dass der dreimonatige gleitende Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 20, die durch die drei Monate gleitenden Durchschnitt produziert wurde. Prognosebeispiel 1991 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Faxgeräten in einem Kaufhaus in den letzten zwölf Monaten. Berechnen Sie die vier Monate gleitenden Durchschnitt für die Monate 4 bis 12. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,2, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für Monat 13 lieber und warum Welche anderen Faktoren, die in den obigen Berechnungen nicht berücksichtigt werden, können die Nachfrage nach dem Faxgerät im Monat 13 beeinflussen. Der viermonatige Gleitende Durchschnitt für die Monate 4 bis 12 ist gegeben durch: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für den Monat zuvor, dh der gleitende Durchschnitt Für den Monat 12 m 12 46,25. Die Prognose für den Monat 13 ist also 46. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,2 anwenden, erhalten wir: Wie vorher ist die Prognose für den Monat 13 nur der Durchschnitt für den Monat 12 M 12 38,618 39 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,2 Insgesamt sehen wir, dass die vier Monate gleitenden Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die vier Monate gleitenden Durchschnitt produziert wurde. Saisonale Nachfrage Werbung Preisänderungen, sowohl diese Marke und andere Marken allgemeine wirtschaftliche Situation neue Technologie Prognosebeispiel 1989 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Mikrowellenherd in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie für jeden Monat einen Sechsmonatsdurchschnitt. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,7, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für den Monat 13 bevorzugen Sie und warum Jetzt können wir nicht berechnen, ein sechs Monat, bis wir mindestens 6 Beobachtungen haben - dh wir können nur einen solchen Durchschnitt ab dem 6. Monat berechnen. Daher haben wir: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für die Monat vor, dh der gleitende Durchschnitt für Monat 12 m 12 38,17. Die Prognose für den 13. Monat ist daher 38. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,7 anwenden, erhalten wir: Kapitel 11 - Demand Management amp Prognose 1. Perfekte Prognose ist praktisch unmöglich 2. Statt der Suche nach dem Perfekte Prognose, ist es viel wichtiger, die Praxis der kontinuierlichen Überprüfung der Prognose zu etablieren und zu lernen, mit ungenauer Prognose zu leben 3. Bei der Prognose ist eine gute Strategie, 2 oder 3 Methoden zu verwenden und sie für die gesunde Sicht zu sehen. 2. Grundquellen der Nachfrage 1. Abhängige Nachfrage - Nachfrage nach Produkten oder Dienstleistungen aufgrund der Nachfrage nach anderen Produkten oder Dienstleistungen. Nicht viel das Unternehmen tun kann, muss es erfüllt werden. 2. Unabhängige Nachfrage - Nachfrage, die nicht direkt von der Nachfrage nach anderen Produkten abgeleitet werden kann. Unternehmen können: a) eine aktive Rolle übernehmen, um die Nachfrage zu beeinflussen - Druck auf Ihre Vertriebsmitarbeiter ausüben b) Nehmen Sie eine passive Rolle, um die Nachfrage zu beeinflussen - wenn ein Unternehmen auf einer vollen Kapazität läuft, kann es nichts über die Nachfrage tun. Andere Gründe sind wettbewerbsfähig, legal, ökologisch, ethisch und moralisch. Versuchen Sie, die Zukunft anhand vergangener Daten vorherzusagen. 1. Kurzfristig - unter 3 Monaten - taktische Entscheidungen wie Nachschub des Inventars oder Terminierung von EEs kurzfristig 2. Mittelfristig - 3 M-2Y - Erfassung saisonaler Effekte wie Kunden reagieren auf ein neues Produkt 3. Langfristig - mehr als 2 Jahre. Um die wichtigsten Wendepunkte zu identifizieren und allgemeine Trends zu erkennen. Lineare Regression ist eine spezielle Regression, bei der die Beziehungen zwischen Variablen eine Gerade Y abX bilden. Y - abhängige Variable a - Y Abzweigung b - Steigung X - unabhängige Variable Sie dient der langfristigen Prognose von Großereignissen und der Gesamtplanung. Es wird sowohl für die Zeitreihenprognose als auch für die Gelegenheitsprognose verwendet. Ist die am häufigsten verwendete Prognosetechnik. Die jüngsten Ereignisse sind für die Zukunft (höchster vorhersehbarer Wert) mehr indikativ als die in der fernen Vergangenheit. Wir sollten den Erz in den letzten Zeiträumen mehr Gewicht verleihen als die Prognose. Jedes Inkrement in der Vergangenheit wird durch (1 - alpha) verringert. Je höher die Alpha, desto genauer folgt die Prognose der tatsächlichen. Die aktuelle Gewichtung alpha (1-alpha) na 0 Daten eine Zeitperiode ältere alpha (1-alpha) na 1 Daten zwei Zeitalter ältere alpha (1-alpha) na 2 Welche der folgenden Prognosemethoden ist sehr abhängig von der Auswahl der Richtige Personen, die urteilsmäßig verwendet werden, um tatsächlich den prognostizierten Wert zu erzeugen, muss zwischen 0 und 1 liegen. 2 oder mehr vorbestimmte Werte von Alpha - abhängig vom Fehlergrad werden unterschiedliche Werte von Alpha verwendet. Wenn der Fehler groß ist, ist Alpha 0,8, wenn der Fehler klein ist, ist Alpha 0,2 2. Berechnete Werte von Alpha - exponentiell geglätteten tatsächlichen Fehler geteilt durch den exponentiell erstickten absoluten Fehler. Qualitative Techniken in der Prognose Kenntnisse von Experten und erfordern viel Urteilsvermögen (neue Produkte oder Regionen) 1. Marktforschung - auf der Suche nach neuen Produkten und Ideen, Vorlieben und Abneigungen gegen bestehende Produkte. In erster Linie SURVEYS amp INTERVIEWS 2. Panel Consensus - die Idee, dass 2 Köpfe besser als eins sind. Panel von Menschen aus einer Vielzahl von Positionen kann eine zuverlässigere Prognose als eine schmalere Gruppe zu entwickeln. Problem ist, dass niedrigere EE-Ebenen von höheren Ebenen der Verwaltung eingeschüchtert werden. Exekutives Urteil wird verwendet (ein höheres Management ist beteiligt). 3. Historische Analogie - eine Firma, die bereits Toaster produziert und Kaffee-Töpfe produzieren möchte, könnte die Toaster-Geschichte als wahrscheinliches Wachstumsmodell nutzen. 4. Delphi-Methode - sehr abhängig von der Auswahl der richtigen Personen, die urteilsmäßig verwendet werden, um tatsächlich die Prognose zu generieren. Jeder hat das gleiche Gewicht (fairer). Zufriedenstellende Ergebnisse werden in der Regel in 3 Runden erreicht. OBJECTIVE - Gemeinsame Planung, Prognose und Nachschub (CPFR) Um ausgewählte interne Informationen auf einem gemeinsamen Webserver auszutauschen, um zuverlässige, langfristige Zukunftsansichten in der Supply Chain zu gewährleisten. Einfacher gleitender Durchschnitt Die zweite Ad-hoc-Methode Ist einfach gleitender Durchschnitt. In denen vorherige Werte verwendet werden, um den am besten geeigneten Parameter zu finden, der den niedrigsten Prognosefehler liefert. Der entscheidende Teil bei dieser Methode ist die richtige Wahl der Anzahl der Perioden in der Prognose genommen. Weatherford und Kimes (2003) prüften 2 8211 8 Perioden und zeigten, dass der niedrigste Fehler 8 Perioden gleitenden Durchschnitt gab. Die Prognose wird mathematisch wie folgt berechnet: wobei F (t1) - bei Raumforderung im Zeitraum t1, x 8211 die Anzahl der verkauften Räume im Zeitraum i, N - die Anzahl der vergangenen Perioden (Phumchusri und Mongkolkul, 2012) ist. Ein einfacher gleitender Durchschnitt ist einfach, schnell zu berechnen und reagiert schneller auf Verschiebungen in der Nachfrage, wenn die N Periode klein ist. Diese Methode hat jedoch zwei wesentliche Nachteile. Erstens geht man davon aus, dass die jüngsten Beobachtungen bessere Prädiktoren sind als ältere Daten. Zweitens, wenn Daten einen Aufwärts - oder Abwärtstrend aufweisen, wird das Verfahren ständig überprognostiziert oder unterforciert. Um diesen Trends gerecht zu werden, empfehlen Talluri und Van Ryzin (2004) einen doppelten oder dreifachen gleitenden Durchschnitt. Die Anwendung dieser Methode auf unseren Datensatz ist hier verfügbar: Simple Moving Average In unserer Anwendung dieser Prognose-Methode ermöglicht, MAPE von 4 zu erreichen, was ist ein sehr gutes Beispiel. Jedoch, wie es zuvor erwähnt wurde, ist dieses Verfahren ein schlechter Prädiktor, wenn die Nachfrage instabiler ist. Die folgende Grafik zeigt eine Situation, in der MAPE 60 (im Modell 2 8211 prognostizierten Werte 1: 2 Perioden) und 55 (in Modell 8 8211 prognostizierten Werten2: 8 Perioden) betrug. Phumchusri, D. Mongkolkul, J. (2012) Hotelzimmer Nachfrage über Observed Reservierungsinformationen. (2004) Die Theorie und Praxis des Revenue Managements. (2004) Talluri, K. und Van Ryzin, G. (2004) Theorie und Praxis des Revenue Managements. Boston, Kluwer Akademische Verlage. Weatherford, L. R. Amp Kimes, S. E. (2003). Ein Vergleich von Prognosemethoden für das Hotel-Revenue-Management. Zeitschrift für anorganische und allgemeine Chemie. Vol. 19, Nr. 3, S. 401-415. Empfehlen Suchmaschine


No comments:

Post a Comment